| Share this post! | Vote this! |
|
Multithreaded programming is never easy, but it does help to understand
how the JVM processes subtly different code constructs. Steven Haines
shares five tips that will help you make more informed decisions when
working with synchronized methods, volatile variables, and atomic
classes.
While few Java™ developers can afford to ignore multithreaded programming and the Java platform libraries that support it, even fewer have time to study threads in depth. Instead, we learn about threads ad hoc, adding new tips and techniques to our toolboxes as we need them. It's possible to build and run decent applications this way, but you can do better. Understanding the threading idiosyncrasies of the Java compiler and the JVM will help you write more efficient, better performing Java code.
In this installment of the 5 things series, I introduce some of the subtler aspects of multithreaded programming with synchronized methods, volatile variables, and atomic classes. My discussion focuses especially on how some of these constructs interact with the JVM and Java compiler, and how the different interactions could affect Java application performance. more...
While few Java™ developers can afford to ignore multithreaded programming and the Java platform libraries that support it, even fewer have time to study threads in depth. Instead, we learn about threads ad hoc, adding new tips and techniques to our toolboxes as we need them. It's possible to build and run decent applications this way, but you can do better. Understanding the threading idiosyncrasies of the Java compiler and the JVM will help you write more efficient, better performing Java code.
In this installment of the 5 things series, I introduce some of the subtler aspects of multithreaded programming with synchronized methods, volatile variables, and atomic classes. My discussion focuses especially on how some of these constructs interact with the JVM and Java compiler, and how the different interactions could affect Java application performance. more...




0 comments:
Post a Comment